Topics in the June 2014 Exam Paper for CHEM1001

Click on the links for resources on each topic.

2014-J-2:

- Molecules and lons
- Chemical Equations
- Stoichiometry

2014-J-3:

• Lewis Model of Bonding

2014-J-4:

• Gas Laws

2014-J-5:

- Gas Laws
- Thermochemistry

2014-J-6:

- Lewis Model of Bonding
- VSEPR

2014-J-7:

- Lewis Model of Bonding
- Types of Intermolecular Forces

2014-J-8:

- VSEPR
- Chemical Equilibrium

2014-J-9:

- Lewis Model of Bonding
- The Periodic Table

2014-J-10:

- Introduction to Electrochemistry
- Electrochemistry
- Electrolytic Cells

2014-J-11:

- Thermochemistry
- First Law of Thermodynamics

2014-J-12:

• First Law of Thermodynamics

2201(a)

THE UNIVERSITY OF SYDNEY <u>FUNDAMENTALS OF CHEMISTRY 1A - CHEM1001</u> <u>FIRST SEMESTER EXAMINATION</u>

CONFIDENTIAL

JUNE 2014

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 15, 20, 22 and 24 are for rough working only.

OFFICIAL USE ONLY

Marks	
Max	Gained
28	

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
10	6			
11	6			
12	7			
13	6			
14	8			
16	5			
17	7			
18	8			
19	8			
21	6			
23	5			
Total	72			
Check Total				

• Co	mplete the following table by filling in	the compound name or formula	as required.	Marks
	Name	Formula		
		CuSO ₄		
		NaNO ₃		
	magnesium chloride			
	iron(III) oxide			
• Wł dis	hat is the molarity of the solution form solved in 800.0 mL of water?	d when 0.50 g of aluminium fluc	oride is	2
		Answer:		-
Wl	nat is $[F^-]$ in this solution?]
				1
				_
		Answer:		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• Explain, using words and diagrams, the type of bonding present in lithium oxide and compare this to the type of bonding in carbon dioxide.	Marks 6
Carbon and oxygen can also react to form carbon monoxide. Draw the Lewis structure of this molecule.	
Explain any difference in the polarity of carbon monoxide and carbon dioxide.	-

• Hydrazine (N ₂ H ₄) reacts with dinitrogen tetraoxide (N ₂ O ₄) to produce nitrogen water, all in the gas phase, according to the following unbalanced equation.	and Marks
$N_2H_4(g) + N_2O_4(g) \rightarrow N_2(g) + H_2O(g)$	
Balance the above equation.	
Describe the physical characteristics of a gas and sketch how the atoms of gase nitrogen might be represented in a container.	eous
1.00 L of hydrazine was mixed with 1.00 L of dinitrogen tetraoxide at 25 °C at 1.00 atm pressure. Briefly explain Avogadro's Law and determine the mole ra hydrazine to dinitrogen tetraoxide present at room temperature?	nd .tio of
Using the ideal gas equation, calculate the number of moles of hydrazine gas u these conditions.	ınder
Answer:	
THIS QUESTION IS CONTINUED ON THE NEXT PAGE.	

If the pressure remains constant at 1.00 at mixture of gases after it was heated to 303	rm, calculate the volume occupied by this 5 °C, before any reaction takes place.	Marks 6
	Answer:	_
The molar heat capacity of N_2H_4 is 63 J K Calculate the heat capacity of this mixture	K^{-1} mol ⁻¹ and that of N ₂ O ₄ is 77 J K ⁻¹ mol ⁻¹ .	
		-
		_
	Answer:	
Calculate the energy required to heat this	mixture from 25 °C to 305 °C.	
	Answer:	
Calculate the maximum mass of nitrogen	gas that could be produced in this reaction.	
	Answer:	

2014-J-6

• Complete	the following table. The central atom	is underlined.	Marks 8
Species	Lewis structure	Molecular geometry	
<u>N</u> H3			
<u>S</u> O ₃			
<u>I</u> Cl ₃			
<u>I</u> Cl ₄ ⁻			

Marks

5

• Complete the Lewis structure of formic acid below by adding double bond(s) and lone pair(s).

Formic acid can form dimers in which two molecules are paired by mutual hydrogen bonding. Draw a dimer of formic acid, clearly showing the hydrogen bonds between the molecules.

Formic acid may lose H⁺ from the oxygen to give a formate ion, shown in Equation 1.

HCOOH(aq) \implies HCOO⁻(aq) + H⁺(aq) Equation 1

Draw a Lewis structure of the formate ion and use it to illustrate the concept of resonance.

Comment on the carbon-oxygen bond lengths in formic acid and the carbon-oxygen bond lengths in the formate ion.

THIS QUESTION IS CONTINUED ON THE NEXT PAGE.

What is the molecular geometry of the formate ion?

Marks 7

Write the equilibrium constant expression for Equation 1.

At equilibrium at 25 °C, the amount of formate ion formed from a 0.100 M solution of formic acid is 4.2 %. Calculate the concentration of $H^+(aq)$ in this solution.

Answer:

Calculate the value of the equilibrium constant, *K*, for Equation 1 at this temperature.

Answer:

Hence calculate the concentration of formate ion in a 0.500 M solution of formic acid.

Answer:

Marks

2

• By adding double bonds and lone pairs, complete the structural formula of the molecule caffeine below.

• Briefly discuss the relationship between the electron configuration of an element and its position in the Periodic Table.

6

Carbon and lead are both in Group 14. One is a non-metal and the other is a metal. Outline one physical and one chemical characteristic of a non-metal and a metal and explain the reason for the trend from one to another in Group 14.

	Non-metal	Metal
Physical characteristic		
Chemical characteristic		
Explanation fo	r trend in Group 14	

Rechargeable nickel-cadmium batteries	normally operate	(discharge) with the
$Cd(OH)_2(s) + 2e^- \rightarrow Cd(s) + 2OI$	H ⁻ (ag)	$E^{\circ}(1) = -0.82 \text{ V}$
$AlF_6^{3-}(aq) + 3e^- \rightarrow Al(s) + 6F^-(a)$	aq)	$E^{\circ}(2) = -2.07 \text{ V}$
Write out a balanced overall cell reaction	on.	
Calculate the overall cell potential under	er standard condition	ons.
	Anguar	
	Answer	
A constant current of 3 15 A is measure	ed during the opera	tion of this cell. What
would be the change in mass of the alun	ninium electrode a	fter 10.0 minutes?
would be the change in mass of the alun	ninium electrode a	fter 10.0 minutes?
would be the change in mass of the alun	ninium electrode a	fter 10.0 minutes?
would be the change in mass of the alun	ninium electrode a	fter 10.0 minutes?
would be the change in mass of the alun	ninium electrode a	fter 10.0 minutes?
would be the change in mass of the alun	ninium electrode a	fter 10.0 minutes?
would be the change in mass of the alun	ninium electrode a	fter 10.0 minutes?
would be the change in mass of the alun	ninium electrode a	fter 10.0 minutes?
would be the change in mass of the alun	ninium electrode a	fter 10.0 minutes?
would be the change in mass of the alun	ninium electrode a	fter 10.0 minutes?
would be the change in mass of the alun	ninium electrode a	fter 10.0 minutes?
Write out the overall cell reaction that we coupled to a standard hydrogen electrod	Answer: vould occur spontate (SHE).	fter 10.0 minutes?
Write out the overall cell reaction that w coupled to a standard hydrogen electrod	Answer: vould occur sponta le (SHE).	fter 10.0 minutes?
Write out the overall cell reaction that we coupled to a standard hydrogen electrod	Answer: vould occur sponta le (SHE).	fter 10.0 minutes?
Write out the overall cell reaction that we coupled to a standard hydrogen electrod	Answer: vould occur sponta le (SHE).	fter 10.0 minutes?
Write out the overall cell reaction that we coupled to a standard hydrogen electrod	Answer: vould occur sponta le (SHE).	Ifter 10.0 minutes?
Write out the overall cell reaction that we coupled to a standard hydrogen electrod	Answer: vould occur sponta le (SHE). s new cell?	Inter 10.0 minutes?
Write out the overall cell reaction that we coupled to a standard hydrogen electrod	Answer: vould occur sponta le (SHE). s new cell?	Inter 10.0 minutes?

•	Combustion of 15.0 g of coal provided sufficient heat to increase the temperature of 7.5 kg of water from 286 K to 298 K. Calculate the amount of heat (in kJ) absorbed by the water. The heat capacity of water, $C_p^{\circ} = 4.2 \text{ J K}^{-1} \text{ g}^{-1}$.	Marks 3
	Answer:	
	Assuming that coal is pure carbon, calculate the heat of combustion (in kJ mol ^{-1}) of the coal.	
	Answer:	
•	The standard enthalpy of formation of $SO_2(g)$ is the enthalpy change that accompanies which reaction?	3
	Calculate the standard enthalpy of formation of SO ₂ (g) given the following data.	
	$SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$ $\Delta H = -99 \text{ kJ mol}^{-1}$	
	$S(s) + {}^{3}/{}_{2}O_{2}(g) \rightarrow SO_{3}(g) \qquad \Delta H = -396 \text{ kJ mol}^{-1}$	
	Answer:	

2014-J-12

Marks • The standard heat of formation of $ClF_3(g)$ is -159 kJ mol⁻¹. Use the bond enthalpies 4 below to calculate the average Cl–F bond enthalpy in $ClF_3(g)$. Bond Cl--Cl F–F Bond enthalpy / kJ mol⁻¹ 243 158 Answer: Explain why this number is different from the average Cl-F bond enthalpy estimated for $ClF_5(g)$ of 151 kJ mol⁻¹. • Explain the observation that the boiling point of ethanol is much higher than that of 1 dimethyl ether despite these compounds having the same molar mass. compound boiling point / °C formula CH₃CH₂OH 78.3 ethanol dimethyl ether CH₃OCH₃ -22.0

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa = 1.013 bar	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	$1 J = 1 kg m^2 s^{-2}$

Deci	mal fract	ions	Deci	Decimal multiples			
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol		
10^{-3}	milli	m	10^{3}	kilo	k		
10^{-6}	micro	μ	10^{6}	mega	Μ		
10^{-9}	nano	n	10 ⁹	giga	G		
10^{-12}	pico	р	10^{12}	tera	Т		

Standard Reduction Potentials, E°	
Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$NO_3^-(aq) + 10H^+(aq) + 8e^- \rightarrow NH_4^+(aq) + 3H_2O$	+0.88
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$\operatorname{Cu}^+(\operatorname{aq}) + \operatorname{e}^- \rightarrow \operatorname{Cu}(\operatorname{s})$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{BiO}^{+}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) + 3\operatorname{e}^{-} \rightarrow \operatorname{Bi}(\operatorname{s}) + \operatorname{H}_{2}\operatorname{O}$	+0.32
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.126
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.136
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Co}(s)$	-0.28
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$\mathrm{Sc}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Sc}(\mathrm{s})$	-2.09
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^{+}(aq) + e^{-} \rightarrow Li(s)$	-3.04

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times \ln K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E = E^{\circ} - \frac{0.0592}{1000} \log Q$ (at 25 °C)
$T\lambda = 2.898 \times 10^6 \text{ K nm}$	n n n n
Acids and Bases	Gas Laws
$pH = -log[H^+]$	PV = nRT
$pK_{\rm w} = pH + pOH = 14.00$	$(P+n^2a/V^2)(V-nb) = nRT$
$pK_w = pK_a + pK_b = 14.00$	$E_{\rm k} = \frac{1}{2}mv^2$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Radioactivity	Kinetics
$t_{1/2} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$
$A = \lambda N$	$k = A e^{-Ea/RT}$
$1 - (\lambda I / \lambda I) = 1$	$\ln[\Delta] = \ln[\Delta]_{0} - kt$
$\ln(N_0/N_t) = \Lambda t$	$\operatorname{III}[\mathbf{A}] \operatorname{III}[\mathbf{A}]_0 = \mathbf{k}$
$\ln(N_0/N_t) = \lambda t$ ¹⁴ C age = 8033 $\ln(A_0/A_t)$ years	$\ln[K] - \ln[K]_0 - kt$ $\ln\frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$
$\ln(N_0/N_t) = \lambda t$ ¹⁴ C age = 8033 ln(A ₀ /A _t) years Colligative Properties & Solutions	$\ln[K] - \ln[K]_0 - kt$ $\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$ Thermodynamics & Equilibrium
$\ln(N_0/N_t) = \lambda t$ ¹⁴ C age = 8033 ln(A ₀ /A _t) years Colligative Properties & Solutions $\Pi = cRT$	$\ln[K] - \ln[K]_0 - kt$ $\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$ Thermodynamics & Equilibrium $\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ$
In $(N_0/N_t) = \lambda t$ ¹⁴ C age = 8033 ln (A_0/A_t) years Colligative Properties & Solutions $\Pi = cRT$ $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\ln[K] - \ln[K]_{0} - kt$ $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$
In $(N_0/N_t) = \lambda t$ ¹⁴ C age = 8033 ln (A_0/A_t) years Colligative Properties & Solutions $\Pi = cRT$ $P_{solution} = X_{solvent} \times P^{\circ}_{solvent}$ c = kp	$\ln[K] - \ln[K]_{0} - kt$ $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$
In $(N_0/N_t) = \lambda t$ ¹⁴ C age = 8033 ln (A_0/A_t) years Colligative Properties & Solutions $\Pi = cRT$ $P_{solution} = X_{solvent} \times P^{\circ}_{solvent}$ c = kp $\Delta T_f = K_f m$	$\ln[X] - \ln[X]_{0} - kt$ $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $\Delta_{\text{univ}}S^{\circ} = R \ln K$
In $(N_0/N_t) = \lambda t$ ¹⁴ C age = 8033 ln (A_0/A_t) years Colligative Properties & Solutions $\Pi = cRT$ $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ c = kp $\Delta T_f = K_f m$ $\Delta T_b = K_b m$	$\ln[K] - \ln[K]_{0} - kt$ $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $\Delta_{\text{univ}} S^{\circ} = R \ln K$ $K_{p} = K_{c} \left(\frac{RT}{100} \right)^{\Delta n}$
In $(N_0/N_t) = \lambda t$ ¹⁴ C age = 8033 ln (A_0/A_t) years Colligative Properties & Solutions $\Pi = cRT$ $P_{solution} = X_{solvent} \times P^{\circ}_{solvent}$ c = kp $\Delta T_f = K_f m$ $\Delta T_b = K_b m$ Miscellaneous	$\ln[K] - \ln[K]_{0} - kt$ $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $\Delta_{univ}S^{\circ} = R \ln K$ $K_{p} = K_{c} \left(\frac{RT}{100} \right)^{\Delta n}$ Mathematics
In $(N_0/N_t) = \lambda t$ ¹⁴ C age = 8033 ln (A_0/A_t) years Colligative Properties & Solutions $\Pi = cRT$ $P_{solution} = X_{solvent} \times P^{\circ}_{solvent}$ c = kp $\Delta T_f = K_f m$ $\Delta T_b = K_b m$ Miscellaneous $A = -\log \frac{I}{I_0}$	$\ln[X] - \ln[X_{10} - kt]$ $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $\Delta_{univ}S^{\circ} = R \ln K$ $K_{p} = K_{c} \left(\frac{RT}{100} \right)^{\Delta n}$ Mathematics If $ax^{2} + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
In $(N_0/N_t) = \lambda t$ ¹⁴ C age = 8033 ln (A_0/A_t) years Colligative Properties & Solutions $\Pi = cRT$ $P_{solution} = X_{solvent} \times P^{\circ}_{solvent}$ c = kp $\Delta T_f = K_f m$ $\Delta T_b = K_b m$ Miscellaneous $A = -\log \frac{I}{I_0}$ $A = \varepsilon cl$	$\ln[X] - \ln[X_{10} - kt]$ $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $\Delta_{univ}S^{\circ} = R \ln K$ $K_{p} = K_{c} \left(\frac{RT}{100} \right)^{\Delta n}$ Mathematics If $ax^{2} + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $\ln x = 2.303 \log x$
In $(N_0/N_t) = \lambda t$ ¹⁴ C age = 8033 ln (A_0/A_t) years Colligative Properties & Solutions $\Pi = cRT$ $P_{solution} = X_{solvent} \times P^{\circ}_{solvent}$ c = kp $\Delta T_f = K_f m$ $\Delta T_b = K_b m$ Miscellaneous $A = -\log \frac{I}{I_0}$ $A = \varepsilon cl$ $F = -4 - \frac{e^2}{N_t}$	$\ln[X] - \ln[X]_{0} - \kappa$ $\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $\Delta_{univ}S^{\circ} = R \ln K$ $K_{p} = K_{c} \left(\frac{RT}{100} \right)^{\Delta n}$ Mathematics If $ax^{2} + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $\ln x = 2.303 \log x$ Area of circle $= \pi r^{2}$

ACTINOIDS	ANTHANOID	87 Francium Fr [223.0]	55 слезним Cs 132.91	37 конолим Rb 85.47	19 ротазяним К 39.10	6.941 11 sodium Na 22.99	1 H 1.008 1.008 LITHIUM LITHIUM	-
89 Activi Ac	S LANTHA 138	88 RADIUM Ra [226.0]	56 ваяним Ва 137.34	38 STRONTIUM Sr 87.62	20 салсим Са 40.08	9.012 12 масиевим Мg 24.31	4 Benvillium Be	2
ом тно см тно с Т 232	91 140	89-103 ["]	57-71	39 ^{уттвим} Ү 88.91	21 scanduum Sc 44.96			ω
h ^{aum} 0		104 Rf [263]	72 наемим Нf 178.49	40 zircontum Zr 91.22	22 тпалим Ті 47.88			4
91 91 Ра [231.0]	59 ^{ляворумили} Рг 140 91	105 ривлим Db [268]	73 талталым Та 180.95	41 ^{мовим} Nb 92.91	23 ^{V аларим} V 50.94			IJ
92 92 URANIUM 238.03	60 NECODYMIUM Nd 144 24	106 ^{звалюленим} Sg [271]	74 W 183.85	42 Molybdenum Mo 95.94	24 снаомим Ст 52.00			6
93 NEPTUNIUM Np [237.0]	61 ркометнисм Рт [144 9]	107 воляцим Вћ [274]	75 RHENNUM 186.2	43 тесниетим Тс [98.91]	25 Manganese Mn 54.94			7
94 Рытомим Ри [239.1]	62 samariim S m 150.4	108 назвим НS [270]	76 озмим Оз 190.2	44 ^{витнемим} Ru 101.07	26 ^{івол} Fe 55.85			×
95 Амерісісим Ата [243.1]	63 Ешворим Ец	109 метикним в Мt [278]	77 іялылм Іг 192.22	45 кнорим Rh 102.91	27 совалт Со 58.93			9
96 Cm [247.	савоция Gd	110 ARMSTADTIUM DS [281]	78 Рілтіним 195.09	46 РАЛ.ГАВИМ Ра 106.4	28 NICKEL Ni 58.69			10
а векк 1] [24		111 коентденим Rg [281]	79 ^{GOLD} Au 196.97	47 silver Ag 107.87	29 соррек Сц 63.55			11
еллим В К [7.1]	93 D	112 соревнистим Сп [285]	80 менсину Нg 200.59	48 сармиим Сd 112.40	30 ^{zinc} Zn 65.39			12
98 98 Cf 252.1]	66 үзркозим Ду 162.50		81 тналлим Т1 204.37	49 ^{імвим} In 114.82	31 ^{сальним} Ga 69.72	10.81 13 лісміянам АІ 26.98	B BORON	13
99 1935 EINSTEINIUM ES [252.1]	67 нодитем Но 164 93	114 ^{flerovium} FI [289]	82 Pb 207.2	50 ^{TIN} Sn 118.69	32 Germanium Ge 72.59	12.01 14 sulcon Si 28.09	C C C C C C C C C C C C C C C C C C C	14
100 _{Fermium} Fm [257.1]	68 еканом Е г 167 26		83 візмитн 208.98	51 литимому Sb 121.75	33 Arsenic As 74.92	14.01 15 рноярновиз Р 30.97	7 NITROGEN	15
101 менделечим Md [256.1]	69 типлим Тт	116 ілуевмовіцм Lv [293]	84 Росолим Ро [210.0]	52 телликим Те 127.60	34 selenium Se 78.96	16.00 16 sulfur S 32.07	OXYGEN 8	16
102 Nobelium No [259.1]	70 Уттеквим УВ 173.04	-	85 ASTATINE At [210.0]	53 IODINE I 126.90	35 вкомпле Br 79.90	19.00 17 сн.окихе СІ 35.45	9 F	17
103 LAWRENCIUM Lr [260.1]	71 цитепим Lu 174 97		86 RADON Rn [222.0]	54 ^{XENON} Xe 131.30	36 камуртом Кг 83.80	20.18 18 лксом Аг 39.95	2 He 4.003 10 Ne	18

PERIODIC TABLE OF THE ELEMENTS

4102 anul

CHEW1001 - EUNDAMENTALS OF CHEMISTRY 1A

(q)1022